Determination of the spin-lifetime anisotropy in graphene using oblique spin precession.

نویسندگان

  • Bart Raes
  • Jeroen E Scheerder
  • Marius V Costache
  • Frédéric Bonell
  • Juan F Sierra
  • Jo Cuppens
  • Joris Van de Vondel
  • Sergio O Valenzuela
چکیده

We determine the spin-lifetime anisotropy of spin-polarized carriers in graphene. In contrast to prior approaches, our method does not require large out-of-plane magnetic fields and thus it is reliable for both low- and high-carrier densities. We first determine the in-plane spin lifetime by conventional spin precession measurements with magnetic fields perpendicular to the graphene plane. Then, to evaluate the out-of-plane spin lifetime, we implement spin precession measurements under oblique magnetic fields that generate an out-of-plane spin population. We find that the spin-lifetime anisotropy of graphene on silicon oxide is independent of carrier density and temperature down to 150 K, and much weaker than previously reported. Indeed, within the experimental uncertainty, the spin relaxation is isotropic. Altogether with the gate dependence of the spin lifetime, this indicates that the spin relaxation is driven by magnetic impurities or random spin-orbit or gauge fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures

Van der Waals heterostructures have become a paradigm for designing new materials and devices in which specific functionalities can be tailored by combining the properties of the individual 2D layers. A single layer of transition-metal dichalcogenide (TMD) is an excellent complement to graphene (Gr) because the high quality of charge and spin transport in Gr is enriched with the large spin-orbi...

متن کامل

Spin-orbit-mediated spin relaxation in ballistic graphene materials

Most of the work on understanding spin relaxation in graphene for spintronic applications relies on the assumption that spin polarization is lost due to scattering and dephasing processes. Here, we present results of a recent theoretical study of spin dynamics of supported graphene in the ballistic regime [1]. This can be relevant in high-quality devices where electron scattering no longer domi...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D mater...

متن کامل

Spin Transport and Spin Precession in Graphene

Spin degree of freedom of electrons is one of the alternative state variables under consideration for processing information, beyond the charge based CMOS technology. The potential of spintronics based research lies in the possibilities for a new generation of computers that can be non-volatile, faster, smaller, and capable of simultaneous data storage and processing all with reduced energy con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016